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Abstract We have developed the spin-unrestricted divide-

and-conquer (DC)-based linear-scaling self-consistent field

method for treating open-shell systems (Kobayashi et al.

in Chem Phys Lett 500:172, 2010). Because the method does

not require the position of excess spins or charges, it made the

treatment of large spin-delocalized systems tractable. The

present study extends the DC-based unrestricted open-shell

scheme to the correlated second-order Møller–Plesset per-

turbation (MP2) theory. Numerical applications to polyene

cations demonstrate that the present method gives highly

accurate results with less computational costs even for spin-

delocalized systems.

Keywords Linear-scaling computation � Open-shell

system � Unrestricted orbital � Electron correlation �
MP2 theory

1 Introduction

The second-order Møller–Plesset perturbation (MP2) the-

ory [1] has been widely used because it is the most prac-

tical (modestly accurate and fast) molecular orbital (MO)

method that can deal with electron correlation in nonem-

pirical manner. Therefore, many quantum chemists have

practiced the efficient implementations of the MP2 com-

putation to date. Recent trends in developing the efficient

MP2 schemes have been to approximate the MP2 compu-

tation by using a rapid calculation trick of the standard MP2

formalism (e.g., local correlation method [2–7], Laplace-

transformed method [8–15], resolution of the identity (RI)

technique [16, 17], and Cholesky decomposed technique

[18, 19]) or by fragmenting the system under consideration

(e.g., fragment molecular orbital (FMO) method [20–23],

molecular tailoring approach [24–26], incremental corre-

lation scheme [27, 28], and divide-and-conquer (DC)

method [29–31]). However, an efficient implementation of

the straightforward MP2 formalism is indispensable not

only to improve the fundamental performance of the

approximate treatment but also to evaluate these approxi-

mation schemes.

In the past several years, Nagase and coworkers have

offered efficient MP2 schemes especially tuned to parallel

implementation. They first provided non-approximate

MP2 energy calculation scheme [32] and extended it to the

nuclear gradient evaluation [33]. This scheme, commonly

called IMS-MP2, allowed us to run actual MP2 calcula-

tions with *2,000 basis functions using a moderate-size
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PC cluster. In the next place, they presented parallel

RI-MP2 implementation in 2009 [34]. This MP2 scheme is

further extended to the periodic system calculations with

Bloch Gaussian basis functions [35]. These two excellent

schemes have been implemented into the GAMESS pro-

gram package [36] and interfaced to GAMESS-FMO pro-

gram [37] with an exception of the periodic RI-MP2

method.

We have also implemented fragmentation-based linear-

scaling DC-MP2 method into GAMESS package (for

review, see Refs. [38, 39]). The DC method was firstly

proposed by Yang and coworkers [40, 41] in the frame-

work of the one-body approximation such as the Hartree–

Fock (HF) method and density functional theory (DFT).

We have investigated its performance for calculations

including HF exchange interactions [42–44] and have

applied the method to static and dynamic (hyper)polariz-

ability calculations [45, 46]. After our basic assessments of

the DC-HF method, He and Merz [47] independently

developed the DC-HF code and assessed its effectiveness

in calculations of realistic closed-shell proteins. Further-

more, its extension to MP2 and the other electron corre-

lation theories [namely, a series of coupled cluster (CC)

methods] was handled by the authors’ group in a different

fashion [29–31, 48, 49] with the assistance of the energy

density analysis (EDA) [50]. Recently, the DC-MP2

module in GAMESS has been interfaced to the IMS-MP2

code [51]. The history of the DC method is well described

in a recent review paper [39].

The applications of the DC method were limited to the

closed-shell systems until we utilized the unrestricted HF

(UHF) or DFT (UDFT) scheme to the DC method [52].

This DC-UHF/UDFT method has an important advantage

over the other fragmentation-based linear-scaling open-

shell treatments [53–57] that does not require an artificial

guess for the position of excess spins or charges. Even in

the elongation method [55, 56], where the spin-delocalized

p-conjugated systems have been treated with reasonable

accuracy, each piecewise calculation is performed for an

integer number of electrons, and the number of electrons

for the fragment that is frozen in the forthcoming calcu-

lation should be specified in integer number. On the other

hand, in the DC method, no artificial prediction related to

the positions of the spin and/or charge is required because

the distribution of electrons in the system under consider-

ation is uniformly settled by the common Fermi level.

However, no ab initio electron correlation theories have

been practiced in the DC calculations of open-shell

systems.

In this paper, we extended the DC-MP2 method to the

unrestricted orbital-based open-shell calculations, which

we call DC-UMP2. The organization of this article is as

follows. Section 2 presents the theoretical aspects of the

DC-UMP2 method after a brief summary of the DC-UHF/

UDFT method. Numerical applications of the present

scheme are given in Sect. 3 in calculations of the charge-

and spin-delocalized polyene cation systems. The conclu-

sion follows as Sect. 4.

2 Theory

2.1 DC-UHF method

In the DC method, the system under consideration is spatially

divided into disjoint subsystems, which is called the central

region. A set of AOs corresponding to the central region a is

denoted by SðaÞ: To improve the description of the subsys-

tem, the neighboring region from the central region, called the

buffer region, is taken into consideration when expanding

subsystem molecular orbitals (MOs) in the DC calculation.

A set of AOs corresponding to the buffer region of subsystem

a, denoted by BðaÞ; is added to SðaÞ and one constructs a set of

AOs in the localization region of subsystem a, LðaÞ; namely,

SðaÞ [ BðaÞ � LðaÞ: ð1Þ

In the DC-UHF calculation of a system with n" up-spin

and n# down-spin electrons, the one-electron density

matrices for up- and down-spins, D" and D#, are given by

D"lm � D"DC
lm ¼

X

a

D"alm; ð2Þ

D#lm � D#DC
lm ¼

X

a

D#alm: ð3Þ

Dra r ¼" or #ð Þ represents the r-spin local density matrix

for subsystem a, obtained by using the Fermi level era
F and

Fermi function fb xð Þ ¼ 1þ exp �bxð Þ½ ��1
with an inverse

temperature parameter b as follows:

Dra
lm � pa

lm

X

q

fb er
F � era

q

� �
Cra

lqCra�
mq ; ð4Þ

where pa is the partition matrix with elements of

pa
lm ¼

1 l 2 S að Þ ^ m 2 S að Þ½ �
1=2 l 2 S að Þ ^ m 2 B að Þ½ � _ l 2 B að Þ ^ m 2 S að Þ½ �
0 otherwise:

8
<

:

ð5Þ

Cra
lq and era

q are the subsystem MO coefficient and orbital

energy for r-spin electrons, which are determined by solving

the following Pople–Nesbet equation for subsystem a,

FraCra
q ¼ era

q SaCra
q : ð6Þ

Here, Sa and Fra represent local overlap and r-spin Fock

matrices for subsystem a that are the submatrices of the entire

overlap and Fock matrices in the basis of LðaÞ. Each Fermi
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level er
F can be determined independently and uniquely by the

constraint of the total number of r-spin electrons nr
e :

nr
e ¼ Tr DrDCS

� �
¼
X

a

X

l2LðaÞ
ðDraSaÞll: ð7Þ

Then, the entire density matrix DrDC can be obtained from

Eqs. 2 and 3.

2.2 DC-UMP2 method

The electron correlation energy of the MP2 method can be

expressed in terms of active occupied orbitals ui;uj

� �
and

virtual orbitals ua;ubf g with the two-electron integral

notation ij abjh i ¼
RR

/�i r1ð Þ/�j r2ð Þr�1
12 /a r1ð Þ/b r2ð Þdr1dr2

as follows:

DEcorr ¼ �
Xocc

i\j

Xvir

a\b

ij j abh i � ij j bah ij j2

ea þ eb � ei � ej
; ð8Þ

in spin-orbital notation. In the UMP2 theory, the correlation

energy can be rewritten with spatial orbitals as sum of up-

spin, down-spin, and cross terms as follows:

DEUMP2 ¼
Xocc

i"\j"

Xvir

a"\b"

i"j" a"b"
��	 


~ti"j";a"b" � ~ti"j";b"a"
� �

þ
Xocc

i#\j#

Xvir

a#\b#

i#j# a#b#
��	 


~ti#j#;a#b# � ~ti#j#;b#a#
� �

þ
Xocc

i"

Xocc

j#

Xvir

a"

Xvir

b#

i"j# a"b#
��	 


~ti"j#;a"b# ; ð9Þ

where ~tirjr
0
;arbr0 represents an effective two-electron excita-

tion coefficient as follows:

~tirjr
0
;arbr0 ¼ �

arbr0 irjr
0��	 


er
a þ er0

b � er
i � er0

j

: ð10Þ

In the DC-based correlation theory, the total correlation

energy is estimated by summing up correlation energies

corresponding to individual subsystems. We have extended

this strategy to the UMP2 theory:

DEDC�UMP2 ¼
Xsubsystem

a

DEa
UMP2: ð11Þ

Here, the correlation energy of subsystem a, DEa
UMP2; is

estimated using subsystem orbitals, which are constructed

in the localization region, containing not only the central

region but also the buffer region. While the buffer regions

overlap in several subsystems, the central ones have no

overlap. To avoid double counting, the correlation energies

corresponding to the central regions should be estimated.

Thus, we adopted the EDA technique [50] applied to the

UMP2 correlation energy representation as follows:

DEa
UMP2 ¼

X";#

r

Xocc

ira\jra

Xvir

ara\bra

X

l2S að Þ
Cra�

li ljra j arabrah i

� ~tairjr;arbr � ~tairjr;brar

h i

þ
Xocc

i"a

Xocc

j#a

Xvir

a"a

Xvir

b#a

X

l2S að Þ

1

2
C"a�li lj#a

�� a"ab#a
	 
�

þC#a�lj i"al
�� a"ab#a

	 
�
~tai"j#;a"b# ; ð12Þ

where ura
i and ura

j represent occupied subsystem orbitals

that have orbital energies era
i and era

j less than the Fermi

level for r-spin er
F; which is determined by the preceding

DC-UHF calculation, while ura
a and ura

b represent virtual

subsystem orbitals that have orbital energies era
a and era

b

greater than the Fermi level er
F: ~ta

irjr
0
;arbr0 represents an

effective two-electron excitation coefficient for subsystem

a as follows:

~ta
irjr
0
;arbr0 ¼ �

arabr0a
�� irajr

0a
	 


era
a þ er0a

b � era
i � er0a

j

: ð13Þ

In the present calculations, we utilized the dual-buffer

DC scheme where the buffer regions used for the DC-based

correlation calculation is set to be smaller than those for the

DC-HF calculation. This scheme, described in detail in a

different paper [31], reduces the computational efforts for

the evaluation of the correlation energy with keeping its

accuracy. Furthermore, the DC-HF procedure can be

substituted with the standard HF by taking the limit of

infinite buffer size. Although the computational cost for

the conventional HF calculation scales as O(n3), it is

usually significantly less than the cost for the MP2

calculation.

A quantity that specifically appears in unrestricted open-

shell calculations is the expected value of the squared spin

operator Ŝ2; which indicates the degree of spin contami-

nation. We should care more about the issue of spin con-

tamination when adopting the UHF or UMP2 method than

UDFT. Although the spin-projection methods such as pro-

jected UHF and UMP2 [58] are the possible candidates for

regaining from the spin contamination, they violate the size

consistency, which must be maintained in the DC scheme.

Ŝ2
	 


is generally given with the reduced two-electron

density matrix C as [59]

Ŝ2
	 


¼ S2
z þ

n" þ n#
2
þ
X

p"q#r#s"

p" r#
��	 


q# s"
��	 


Cp"q#r#s" ;

ð14Þ

where nr is the number of r-spin electrons and Sz ¼
n" � n#
� �

2: In the DC-UHF method [52], the third term of

Eq. 14 can be evaluated with the DC-UHF density
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matrices. However, we have not derived the DC-MP2

density matrix so far. We will report the scheme to evaluate

Ŝ2
	 


in the DC-UMP2 elsewhere.

3 Illustrative applications

The present DC-UMP2 method was assessed in calcula-

tions of polyene cation doublet CnHn?2
? (see Fig. 1 repre-

senting an example for n = 30, C2h symmetry). All

calculations were performed with the modified version of

the GAMESS program package [36]. C2H4 (or C2H5 for the

edges) was adopted as a central region and several adjacent

C2H4 (or C2H5) units were treated as the corresponding

buffer region. The size of buffer region is denoted by ncorr
b

that indicates the number of carbon atoms in each left and

right buffer region (see Fig. 1 representing an example for

ncorr
b ¼ 8). The following calculations were performed with

the 6-31G** basis set [60] unless otherwise noted.

Applying the dual-buffer DC correlation scheme, only the

electron correlation was treated with the DC approach after

the standard UHF calculations for clearly showing that the

errors reported in the present study originate only in the

present DC-UMP2 approximation.

Table 1 shows the correlation buffer size ncorr
b

� �

dependence of the correlation energies obtained by

the DC-UMP2 calculations of polyene cation C30H32
?.

The energies of neutral polyene C30H32 obtained by the

restricted MP2 calculations are also tabulated for compar-

ison. The conventional MP2 correlation energies are listed

on the bottom line, and the differences between DC and

standard energies are presented in parentheses in mhartree.

As the correlation buffer size ncorr
b increases, the energy

error becomes small. The energy errors for ncorr
b 	 6 are

\1.4 mhartree that achieves so-called chemical accuracy

(1 kcal/mol). It was also found that the errors by the

DC-UMP2 calculations are comparable to those by the

closed-shell DC-MP2 calculations except for the case

adopting the smallest buffer size of ncorr
b ¼ 4, where the

so-called error cancellation may occur. Note that the cor-

relation energy errors of the neutral polyene system

reported in the present study are slightly larger than those

in Ref. [48], where the smaller 6-31G basis set was

adopted, although they are comparable to those in Ref. [49]

adopting the same 6-31G** basis set in the CCSD(T) level

of theory.

Table 2 compares the total energy of polyene cation

systems CnHn?2
? (n = 10, 20, 26, 30, 40, and 60) obtained

by the DC and conventional UMP2 method. The correla-

tion buffer size was fixed at ncorr
b ¼ 8 in the DC calcula-

tions, which is larger than in the DC-CC studies [48, 49]

because the cost for the MP2 correlation calculation is

significantly lower than that for CC calculation. The dif-

ferences between DC and conventional energies are shown

in parentheses in mhartree. The energy error for n = 10

becomes zero because all localization regions contain the

entire system when using ncorr
b ¼ 8: It was found that the

errors introduced by the DC method keep \0.5 mhartree

for n = 20–40 by using ncorr
b ¼ 8:

The efficiency of the DC-UMP2 method was examined

by measuring the central processing unit (CPU) time. An

Intel Xeon X5470 (3.33 GHz) processor was used on a

single core. Table 3 shows the system-size dependence of

the CPU times and required memory size for the DC and

conventional UMP2 calculations of polyene cation systems

CnHn?2
? (n = 10, 20, 26, 30, 40, and 60) with the

Fig. 1 Structure of the polyene cation C30H32
? and the schematic of

the central and buffer regions in the DC calculations with ncorr
b ¼ 8

Table 1 Correlation buffer-size dependence of DC-MP2 correlation

energies (in hartree) of the neutral and cation polyenes, C30H32 and

C30H32
?, at the 6-31G** level

ncorr
b Neutral Cation

DERMP2 (Diff.) DEUMP2 (Diff.)

4 -3.992941 (?2.780) -3.774790 (-0.452)

6 -3.994383 (?1.339) -3.772970 (?1.367)

8 -3.995231 (?0.490) -3.773936 (?0.402)

10 -3.995582 (?0.140) -3.774274 (?0.064)

Conventional -3.995721 (–) -3.774338 (–)

The closed-shell neutral polyene was calculated adopting the

restricted orbitals. DC scheme was only applied to the correlation

calculation after the standard HF calculation. Energy deviations from

conventional MP2 results are shown in parentheses in mhartree

Table 2 System-size dependence of DC and conventional UMP2

total energies (in hartree) of the polyene cation CnHn?2
? at the

6-31G** level with ncorr
b ¼ 8

n EUMP2 EDC�UMP2 (Diff.)

10 -386.646383 -386.646383 (-0.000)

20 -772.401788 -772.401678 (?0.105)

26 -1,003.812448 -1,003.812359 (?0.090)

30 -1,158.112941 -1,158.112539 (?0.402)

40 -1,543.817715 -1,543.817507 (?0.209)

60 – -2,315.223720 (–)

DC scheme was only applied to the correlation calculation after the

standard UHF calculation. Energy deviations from conventional

UMP2 results are shown in parentheses in mhartree
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correlation buffer size ncorr
b ¼ 8: The CPU times and

required memory sizes are plotted in Fig. 2a and b,

respectively. It should be noted that the time for the HF

iterations preceding the MP2 calculation is not included

because we utilized the standard full SCF procedure for

both DC and conventional calculations. As expected from

the closed-shell DC-MP2 presented in the previous paper

[30], the DC-UMP2 method drastically reduces the CPU

time from the conventional UMP2 time. For n B 20, the

times for DC-UMP2 calculations were larger than those for

the conventional calculations, because the median locali-

zation region contains up to 18 carbon atoms. However,

for n C 26, the DC method becomes faster than the

conventional method. According to the scaling analysis by

the double-logarithmic plot, the CPU times scale with

O(n5.57) and O(n1.53) for conventional and DC-UMP2

calculations, respectively, which are slightly larger than the

theoretical asymptotic values of O(n5) and O(n1). The

present implementation is based on the UMP2 code in

the present GAMESS program, which requires heavy disk

I/O. The disk I/O may reduce the effectiveness of both

conventional and DC-MP2 from their theoretical limit. For

n = 10, where all localization regions contain the entire

system, the required memory size for the DC-UMP2 cal-

culation is approximately twice as large as that for the

conventional UMP2 calculation because the evaluation of

the correlation energy corresponding to the central region

requires additional memories to the conventional UMP2

calculation. For n C 26, however, the memory size

required for the DC-UMP2 calculation is constant with

respect to the system size n, while that for the conventional

calculation increases roughly proportionally to n3.

Finally, Table 4 shows the basis-set dependence of the

total energies obtained by the DC-UMP2 calculations of

polyene cation C40H42
?. STO-6G [61], 6-31G [62],

6-311G [63], and 6-311G** [63] basis sets were adopted in

addition to the 6-31G** set. The correlation buffer-size

was fixed at ncorr
b ¼ 8: The differences between DC and

conventional energies are presented in parentheses in

mhartree. The energy errors do not show significant

dependence on the basis set adopted and are comparatively

small:\0.4 mhartree. Therefore, the use of larger basis set

does not deteriorate the effectiveness of the present

method, unless diffuse functions are added. The issue on

the diffuse functions in the DC method should be resolved

elsewhere.

4 Conclusion

In the previous paper [52], we have introduced the unre-

stricted orbital scheme to the DC SCF method for treating

large open-shell systems. In this study, we enabled the

Table 3 System-size dependence of DC and conventional UMP2

CPU time (min) and required memory size (Mbyte) of the polyene

cation CnHn?2
? at the 6-31G** level with ncorr

b ¼ 8

n CPU time Required memory size

Conventional

UMP2

DC-UMP2 Conventional

UMP2

DC-UMP2

10 2.0 16.7 76.4 150.2

20 31.3 139.8 558.8 783.0

26 319.6 264.3 1,203.1 751.4

30 697.1 347.0 1,831.8 751.4

40 3,514.8 551.2 4,278.5 751.4

60 – 960.9 – 751.4

An Intel Xeon X5470 (3.33 GHz) processor was used on a single core

Fig. 2 System size dependence of UMP2 a CPU time (min) and

b required memory size (Mbyte) for the DC and conventional UMP2

calculations of the polyene cation CnHn?2
? at the 6-31G** level with

ncorr
b ¼ 8: An Intel Xeon X5470 (3.33 GHz) processor was used on a

single core

Table 4 Basis-set dependence of DC and conventional UMP2 total

energies (in hartree) of the polyene cation C40H42
? with ncorr

b ¼ 8

Basis set EUMP2 EDC�UMP2 (Diff.)

STO-6G -1,536.939441 -1,536.939354 (?0.087)

6-31G -1,541.380225 -1,541.380017 (?0.208)

6-31G** -1,543.817715 -1,543.817507 (?0.209)

6-311G -1,541.873844 -1,541.873865 (-0.021)

6-311G** -1,544.368953 -1,544.368583 (?0.370)

DC scheme was only applied to the correlation calculation after the

standard UHF calculation. Energy deviations from conventional

UMP2 results are shown in parentheses in mhartree
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correlated open-shell treatment in the framework of the

DC-based correlation method. The present DC-UMP2

method was implemented into the GAMESS program and

was assessed in calculations of the spin- and charge-delo-

calized polyene cation systems CnHn?2
? . Numerical

assessments revealed that the DC-UMP2 method has the

advantageous features of the closed-shell DC-MP2 method:

the correlation energy errors are generally small achieving

the chemical accuracy and are controllable with the buffer

size, the CPU time scales quasi-linearly with respect to the

system size, and the required memory size becomes

constant.

In the recent computer architecture, the development of

an efficient parallelization scheme is important as well as

the acceleration on a single core. Because the correlation

energy of a subsystem is evaluated independently of the

other subsystems in the DC-MP2 method, straightforward

parallelization over subsystems will enhance the parallel

efficiency in DC-MP2 calculation. In case of closed-shell

systems, the DC-MP2 code applied to the generalized

distributed data interface was developed in order to achieve

a two-level hierarchical parallelization under the collabo-

ration with Katouda and Nagase [51]. The use of this

parallelization scheme as well as the development of the

individual MP2 algorithm that is appropriate for the recent

computer architecture will extend the applicability of the

DC-(U)MP2 method to huge systems, including nano-

magnetic materials, carbon materials, metalloenzymes, and

heme proteins.
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